Lecture 10: Semi-Markov Type Processes

ثبت نشده
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Generalized Semi-Markov Processes using Continuous Phase-Type Distributions

We introduce the generalized semi-Markov decision process (GSMDP) as an extension of continuous-time MDPs and semi-Markov decision processes (SMDPs) for modeling stochastic decision processes with asynchronous events and actions. Using phase-type distributions and uniformization, we show how an arbitrary GSMDP can be approximated by a discrete-time MDP, which can then be solved using existing M...

متن کامل

Solving Generalized Semi-Markov Decision Processes Using Continuous Phase-Type Distributions

We introduce the generalized semi-Markov decision process (GSMDP) as an extension of continuous-time MDPs and semi-Markov decision processes (SMDPs) for modeling stochastic decision processes with asynchronous events and actions. Using phase-type distributions and uniformization, we show how an arbitrary GSMDP can be approximated by a discrete-time MDP, which can then be solved using existing M...

متن کامل

Estimation in a Proportional Hazard Model for Semi-markov Counting Process

Estimation is studied in a regression model for counting processes whose baseline intensity processes are of semi-Markov form. Asymptotic normality is established for a Breslow-type estimator of the cumulative baseline hazard for each gap time of the counting process.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011